Energy Savings Through Denitrification

If Your Plant Nitrifies, Why Not Make it Denitrify

Brett Ward Utility Operations Consultant Municipal Technical Advisory Service The University of Tennessee

Nitrate, NO₃

 The discharge of Nitrate from a wastewater plant, either in the effluent or in sludge or biosolids represents potential electrical savings.

Electrical Savings

 The savings occur when operators are able to turn aeration equipment "off" for short periods of time, allow the aeration basin to denitrify, then restart aeration.

Why Denitrify?

- Required
 - New NPDES Permit Limits
 - Total Nitrogen
 - Nitrate
- Desired
 - Activated Sludge Improvements
 - Reduced Electrical Usage

Denitrification Benefits

- Meet the Permit
- Recycle Oxygen
- Recover Alkalinity/pH
- Improve Effluent
- Select against Filaments
- Improved Solids Proc.
- Save Dollars

Total Nitrogen Limits

• Total Nitrogen

 $TN = TKN + NO_2 + NO_3$

TKN = Organic Nitrogen + Ammonia

Nitrification: Ammonia to Nitrate Nitrite(NO₂₎: generally low Organic Nitrogen : generally low ~ TSS

• Nitrate, NO₃ parameter of concern

Removing Nitrate Through Biological Denitrification

- Create the needed environment
 - Nitrate must be present
 - Anoxic, Dissolved Oxygen < 0.3 mg/L
 - BOD or food must be available
 - BOD organisms must be present

Speed of Denitrification

Fast

- DO = 0.0 mg/L
- Soluble BOD available

Slow

- DO > 0.3 mg/L
- Little Food
 - Endogenous Respiration
 - Extended Aeration
 - Digester

Making Your Plant Denitrify

• Locate the basin which best meets the denitrification requirements.

- Primary clarifier, depends of piping
- Aeration basin, perhaps
- Final clarifier, no way!
- Other basins, what do you have?

Aerator is Common Choice

- Turn the air "OFF",
- Denitrify
- Turn the air back "ON"

#1 Activated Sludge Myth

- Aeration basin Dissolved Oxygen must be maintained at a set levels continuously. Dan Miklos, Advanced Treatment Science, Columbus, Ohio
- Biological treatment is more flexible than this!
 - Treatment and odor prevention will continue as long as there is O_2 or NO_3

Oxygen Usage Hierarchy

Free Dissolved Oxygen	Aerobic or Oxic Treatment
Little or No free Oxygen, but NO ₃ present	Anoxic Treatment
Sulfate, SO_4 is the next choice of the Bugs	Anaerobic conditions are beginning. ODORS fm. H_2S
	12

"Off – On" Aeration

Wastewater Treatment Plant Examples

Prison Wastewater Treatment

Operational Problems

- Low pH
- Bloodworms
- 1 Caustic feed added
- 2 OFF/ON
 - 3hr ON/ 3hr Off
 - Recycled alkalinity
 - pH maintained
 - Caustic eliminated
 - Bloodworms gone

Aerators with air "off"

14

Prison Wastewater Treatment

- Current Data, EFF.
 - BOD ~1-2 mg/L
 - TSS ~1-2 mg/L
 - NH₄ ~0.3 mg/L
 - NO₃, 1-4 mg/l
 - pH ~7.0
- Aerator
 - pH 6.2-6.8
 - Alkalinity ~80 mgL

Small Oxidation Ditch

- 30 min. Settlometer =1000
- Microscopic evaluation = filaments
- History of low eff. pH
- Eff Alkalinity ~ 0.0mg/L
- Off/ On
 - 5hr ON/ 3hr off
- Best effluent ever and 30% electricity savings

Large Oxidation Ditch

Large Oxidation Ditch

- Kruger system
- Computer controlled Dissolved Oxygen Range
 0.2 to 1.5 mg/L
- $NO_3 < 1.0 \text{ mg/L}$
- TSS ~ 1.0 mg/L
- BOD < 5.0 mg/L

Extreme Cycles

- Complete Mix /Plug Flow AS
- Basic Cycle
 Off 2-6 pm
 Off 12-6 am
- BOD ~ 3.0
- TSS ~ 1.0
- NH₄ <0.2
- $NO_3 \sim 5.0$

Determine "Off" Time

- ORP, Oxidation Reduction Potential
 - Common cycle
 - Aerate to +200 mV
 - Air "off" to -50 mV
 - Theoretical beginning of Sulfate reduction
 - -50 mV, Goronszy
 - -100 to -200mV Optimum range for H₂S creation
 - Odors will depend on concentration of $H_2S \& pH$
 - Measure in the settled Biomass

ORP & DO Graph

Charpentier, et.al. Water Science & Tech. 1998

Determine "Off" Time

- Oxygen Uptake Rate, OUR $- O_2 mg/L + (2.86 * NO_3 mg/L) = Hours "Off"$ OUR mg/L/ Hr
- Monitor
 - pH, Alkalinity, Nitrate
 - Enzyme Fluorescence, more direct measure of biological metabolism.
- Trial and Error

Items of Concern

- Aeration Capacity to raise DO after "Off" cycle.
- Diffuser Type
- Mixing
- Switch Control
 - Manual, Timers, Computer
- Different Flows & Loads

If you nitrify, Why not denitrify?

- Benefits
 - Meet permit limits
 - Save money
 - Recycle oxygen and alkalinity
 - Select against filaments
 - Be a better operator!

