Aerobic Digestion, or, It's a Bug eat Bug World

Brett Ward Municipal Technical Advisory Service The University of Tennessee

Aerobic Digestion

- Continuation of the Activated Sludge Process
 - "Super" Extended Aeration
 - No food is added
 - Reduction of Volatile Solids through:
 - Endogenous Respiration
 - Bacterial Cells use their own protoplasm for energy
 - Some cells die and become food for others

Biological Chemistry

- BOD, Bug Food, Organic Pollution
 - Test of the organic strength of sewage
 - Organic- from plants and animals – Protein, carbohydrates, fats
 - Fecal matter, food scrapes, paper, industrial waste of plant or animal origin.
- Normal Bacteriological Respiration

BOD + BOD Bugs + O_2 = More BOD Bugs + CO_2 + H_2O + NH_3

Respiration / Oxidation

- Respiration
 - We call it breathing
 - Scientifically it is the release of energy
 - The Bugs want the energy in the BOD
 - Energy to live and grow
 - The Bugs are teeny tiny chemical factories
 - They split complex organic compounds into simple oxidized compounds.

Respiration / Oxidation

• Normal Bacteriological Respiration

BOD + BOD _{Bugs} + O_2 = More BOD _{Bugs} + CO_2 + H_2O + NH_3

Glucose $C_6H_{12}O_6 + BOD_{Bugs} + O_2 = More BOD_{Bugs} + CO_2 + H_2O$

Protein

 $C_3H_7O_2N + BOD_{Bugs} + O_2 = More BOD_{Bugs} + CO_2 + H_2O + NH_3$

Sewage Treatment

- Sewage, BOD
 Carbs, Protein, Fats
- Add air and mix well
- Bugs grow
 - And Grow
 - And Grow

Waste excess Bugs to Digester

- With out wasting MLSS goes up, up, up and OUT!
- Waste today what grew today

Biological Chemistry

- Digesters receive no food or BOD
- Endogenous Respiration

BOD _{Bugs} $+O_2 = Less BOD _{Bugs} + CO_2 + H_2O + NH_3$

- Bugs use stored energy
- Some die, and become food for others
- Reduction of Volatile Solids

Digestion Goals

Thicken Waste Activated Sludge: Decanting Control Odors, Keep it aerobic Reduce Sludge Volume, Endogenous Resp.

Meet Disposal Requirements

- Land Fill
- Land Application

Aerobic Advantages

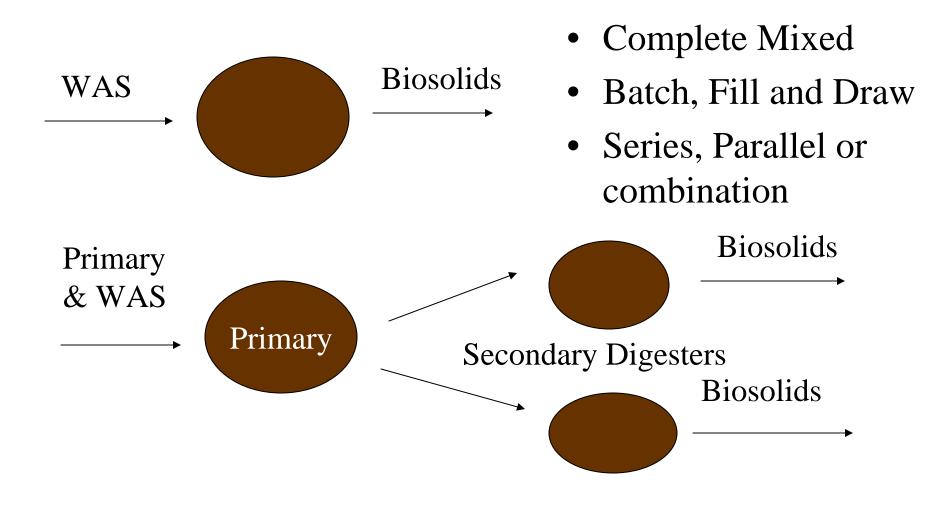
- Low Construction Cost
- Easy to Operate
- High Quality Supernatant
- Safer process, no methane

Aerobic vs Anaerobic Supernatant

- Aerobic
 - BOD 500 mg/L
 - TSS 100-300 mg/L
 - TKN 170 mg/L
 - T.Phos 98 mg/L

Anaerobic
 BOD 1000-10000 mg/L
 TSS 5000- 15000mg/L
 Ammonia 500-1000mg/L
 T. Phos 300-1000mg/L

Aerobic Disadvantages


- High Aeration Costs, electricity
- Digested Sludge more difficult to dewater
- Process affected by temperature changes
- More Sludge produced for disposal

Aerobic Digester Design

- Various Sizes
- Various Aeration
 - Diffused air
 - Surface Mechanical
- Various Decant
 - Fixed Valves
 - Moving Arms
 - Telescoping Valves
 - Suspended Pumps

Operating Strategy

Digester Operations

- Operational Strategy
 - Tools you have
 - Basins
 - Decant or supernatant equipment
 - Aeration
 - Personnel
 - Destination
 - Land Fill
 - Land Application
 - Other Facility

Digester Monitoring

- Daily to Weekly
 - Dissolved Oxygen
 - Settleometer
 - pH, Alkalinity
 - Nitrate
- 503 tests, Prior to use or disposal
 - SOUR
 - Temperature
 - Fecal

Digester Monitoring

Supernatant Monitoring

- Monitor for affects on the water treatment system.
 - Flow
 - BOD
 - Ammonia
 - TSS
 - Nitrate (NO₃)
 - Phosphorus

Land Fill

- Special Waste Permit
 - Division of Solid
 Waste Management
 - No Free Water, AKA"paint filter test"
 - No Toxic Lecheate, TCLP, Toxic
 Characteristics
 Lecheate Proceedure

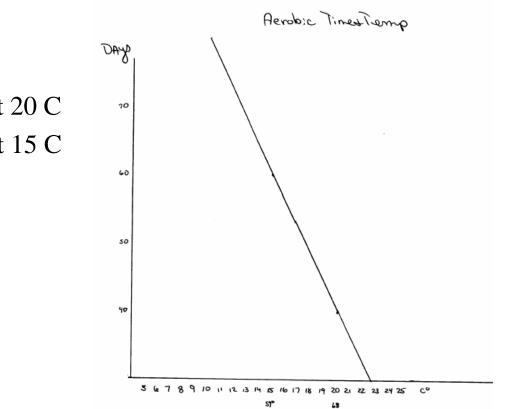
Land Fill

- Primary Concerns
 - Odor Control, too little O2, too much feed Sludge
 - Oxygen
 - Maintain Oxic environment
 - Sacramento Manual, 1-2 mg/L DO
 - What works for you
 - 0.5 mg/L, can be more cost effective
 - >2.0 mg/L
 - » wastes electricity
 - » can cause low pH
 - » can contribute to foaming

Land Fill

- Dewatering
 - Avoid excessive long aeration times
 - Long times decrease floc and particle size
 - Greater than 20 days, Capillary Suction Time (CST) greatly increases
 - Lower CST means better dewatering.

- "503" Requirements
 - Metal accumulation
 - Nitrogen management
 - Pathogen Destruction
 - Class A or B
 - Vector Requirements
 - 38% Red. of V.S.
 - SOUR
 - Bench top test
 - Time and Temp.


- Concerns
 - Odors
 - Pathogen Reduction
 - Vector Attraction Red.

• Class B

Geometric Mean of seven samples is less than 2,000,000 cfu/g
Requires Total Solids Test for Calculations

- Natural Die off in Digester
 - Intestinal organisms
 - Air "Off" cycles appear to assist in reduction.

- Class B, PSRP
 - Aerobic Digestion
 - MCRT, 40 days at 20 C

60 days at 15 C

- Vector Attraction Reduction
 - 38% Reduction of VS, Van Kleeck Equation
 - Works best where there is Primary Sludge feed
 - Bench Top Aerobic Digestion
 - SOUR Test, don't thicken above 2% TS
- All are tests to document Sludge Stability
 Low BOD (food), Low energy, highly oxidized

Sludge Stabilization

- Requires Time and Air
 - Low Temperature Slows the process
 - High Temps speed the process
- TN Design Criteria
 - 12.5.2.2 "Hydraulic detention time at 20 C should be 15- 25 days depending on type...

Sludge Stabilization

- This may not be enough.
 - Variables
 - Feed Sludge, WAS, Primary, Combination
 - We all have "Winter Temperatures"
 - Design for 20 C guarantees failure in Winter
 - Aeration equipment and location can warm your digester in the winter.

Aerobic Digester Tips

- Low Temperature
 - Slows Pathogen Reduction
 - Slows Volatile Solids Reduction
- High Temperature
 - Speeds Pathogen Reduction
 - Speeds Volatile Solid Reduction

Aerobic Digester Tips

- Low DO
 - does not slow pathogen reduction
 - does not slow volatile solids reduction
- High DO
 - Will cause pH to decrease
 - Will waste electricity

• Endogenous Respiration

BOD _{Bugs} $+O_2 = Less BOD _{Bugs} + CO_2 + H_2O + NH_3$

• Ammonia is produced

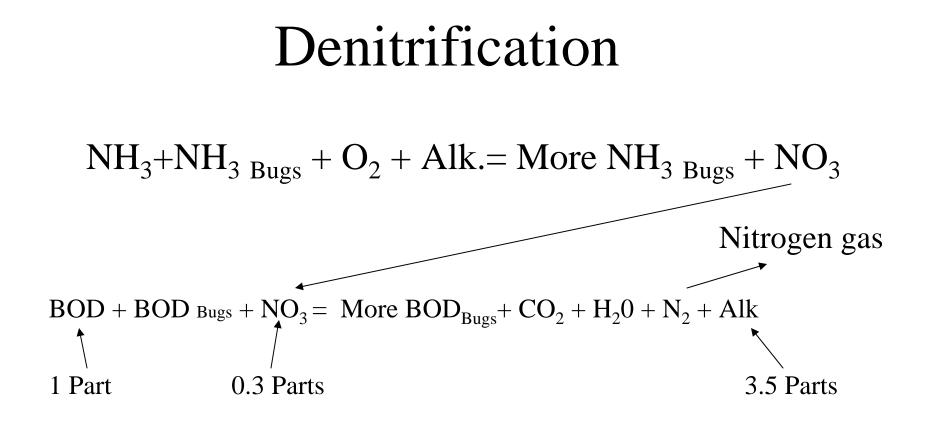
- Where there is Ammonia, There is sure to be nitrification
 - Elements of Nitrification
 - Ammonia Present
 - Old Sludge Age
 - Adequate Oxygen
 - Adequate Temperature
 - Adequate Alkalinity

- $NH_3 + NH_3_{Bugs} + O_2 + Alk = More NH_3_{Bugs} + NO_3$ 1 Part 4 Parts 7 Parts
- Nitrification is an expensive process
- If you aerate continuously for long times, alkalinity may drop and pH drop.

- If pH drops,
- If nitrates are present
- Turn the aeration "Off" and Denitrify!

Oxygen Usage Hierarchy

Free Dissolved Oxygen	Aerobic or Oxic Treatment
Little or No free Oxygen, but NO_3 present	Anoxic Treatment
Sulfate, SO_4 is the next choice of the Bugs	Anaerobic conditions are beginning. ODORS fm. H_2S


Denitrification

• Normal Bacteriological Respiration

BOD + BOD Bugs + Q_2 = More BOD Bugs + CO_2 + H_2O + NH_3

1 Part 1.25 Parts

BOD + BOD Bugs + G_2 = More BOD Bugs + CO₂ + H₂0 + NH₃

Denitrifying returns alkalinity to the basin and stops pH drop

- Nitrogen Fertilizer value of the Biosolids
- The lower the nitrate the more can be applied per acre.

Parameter					/		
	W.Result	RDL (D.Result /	RDL	Units	Method	D
Ammonia Nitrogen	BDL	5.0	BDL	480	#g/kg	350.1	06/09
Nitrate-Nitrite	60.	0.10	5700	9.5	mg/kg	9056	06/09
Kjeldahl Nitrogen, TKN	550	100	52000	9500	mg/kg	351.2	06/21
Total Solids	1.05		1.05		8	2540G	06/10
Mercury	0.021	0.020	2.0	1.9	mg/kg	7471	06/16
Arsenic Cadmium Chromium Copper Lead Molybdenum Nickel Selenium Zinc	BDL 0.027 0.17 3.8 0.25 0.062 BDL BDL 11.	D.10 0.025 0.050 0.10 0.025 0.010 0.10 0.10 0.15	BDL 2.6 16. 360 24. 5.9 BDL BDL BDL 1100	9.5 2.4 4.8 9.5 2.4 0.95 9.5 9.5 14.	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	05/10 05/10 05/10 05/10 05/10 05/10 05/10 05/10 05/10

Parameter							
	W.Result	RDL	(D.Result	RDL	Units	Method	D
Annonia Nitrogen	BDL	5.0	BDL	650	mg/kg	350.1	06/09
Nitrate-Nitrite	170	0.20	22000	26.	mg/kg	9056	06/15
Kjeldahl Nitrogen, TKN	360	50.	47000	6500	mg/kg	351.2	06/21
Total Solids	0.770		0.770		*	2540G	06/10
Mercury	0.028	6,020	3.6	2.6	mg/kg	7471	06/16
Arsenic Cadmium Chromium Copper Lead Molybdenum Nickel Selenium Zinc	BDL BDL 0.15 2.2 0.22 0.043 BDL BDL 5.0	0.10 0.025 0.050 0.10 0.025 0.010 0.10 0.10 0.15	BOL BDL 19. 280 29. 5.6 BDL BDL 650	13. 3.2 6.5 13. 3.2 1.3 13. 13. 13.	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	06/10 06/10 06/10 06/10 06/10 06/10 06/10 06/10

- Nitrate Levels
 - Digester #1, 5700 mg/L
 - Digester #2, 22,000 mg/L
- Digester #2 Sludge requires 30% more land for application.

Actual Land Application Case


- Biosolids Nitrate
 - 4000-7000 mg/L
 - Not enough land to apply at the present Agronomic Loading Rate
- Initiated "Off- On" aeration
 - 8 hours ON, 16 hours OFF
- Biosolids Nitrate
 - 100-1000 mg/L, 75-98 % reduction
 - Application rates up and no need for more land.

Benefits of Denitrification

- Prevent pH drops by recycling Alkalinity
- Save money by recycling Oxygen
- Apply Biosolids at higher rates
- Improved Dewatering characteristics
- Reduce sludge volume
- Select against filaments

Denitrification reduces the Aerobic Digester Disadvantages

- High Aeration Costs, electricity, Reduced
- Digested Sludge more difficult to dewater, Improved
- Process affected by temperature changes
- More Sludge produced for disposal, Improved

Digester Case Study

- Two Stage
 - Aerated 24/7, odors, odors, odors
 - First Stage, primary and WAS
- Stage Two
 - Low pH, as low as 6.0 s.u. and under,
 - What would you do?

On More Issue Foaming

- This looks like nocardiaform foam
- If it is a problem...
- Microscopic Exam
- Surface chlorinate
 - 1% Cl₂ liquid spray on the foam when the air is "OFF"
 - More than once per day is better.

More Foam

- Light smelly foam
- Primary Sludge Feed
- Not filaments
- Microscopic Exam
 - Small solids
 - Paper fibers

Aerobic Digesters

• Questions?