Making Your Plant Denitrify

Control the Process and Reap the Benefits

Brett Ward
Utility Operations Consultant
Municipal Technical Advisory Service
The University of Tennessee

Why Denitrify?

- Required
 - New NPDES Permit Limits
 - Total Nitrogen
 - Nitrate
- Desired
 - Activated Sludge Improvements
 - Reduced Electrical Usage

Denitrification Benefits

- Meet the Permit
- Recycle Oxygen
- Recover Alkalinity/pH
- Improve Effluent
- Select against
 Filaments
- Improved Solids Proc.
- Save Dollars

Total Nitrogen Limits

Total Nitrogen

$$TN = TKN + NO_2 + NO_3$$

 $TKN = Organic Nitrogen + Ammonia$

Nitrification: Ammonia to Nitrate

NO₂: generally low

Organic Nitrogen ~ TSS

• Nitrate, NO₃ parameter of concern

Tennessee Limits

- Ammonia Limits based on Stream:
 - Dissolved Oxygen
 - Toxicity to organisms
- Total Nitrogen
 - Limited if expanding on an impaired stream
 - Monitoring if simple renewal

Kentucky Limits

- Ammonia Limits based on Stream:
 - Dissolved Oxygen
 - Toxicity to organisms
- Total Nitrogen
 - Not limited at this time for municipal dischargers

Removing Nitrate Through Biological Denitrification

- Create the needed environment
 - Nitrate must be present
 - Anoxic, Dissolved Oxygen < 0.3 mg/L
 - BOD or food must be available
 - BOD organisms must be present

Speed of Denitrification

Fast

- DO = 0.0 mg/L
- Soluble BOD available

Slow

- DO > 0.3 mg/L
- Little Food
 - EndogenousRespiration
 - Extended Aeration
 - Digester

Making Your Plant Denitrify

• Locate the basin which best meets the denitrification requirements.

- Primary clarifier, depends of piping
- Aeration basin, perhaps
- Final clarifier, no way!
- Other basins, what do you have?

Aerator is Common Choice

- Turn the air "OFF",
- Denitrify
- Turn the air back "ON"

#1 Activated Sludge Myth

• Aeration basin Dissolved Oxygen must be maintained at a set levels continuously. Dan Miklos, Advanced Treatment Science, Columbus, Ohio

- Biological treatment is more flexible than this!
 - Treatment and odor prevention will continue as long as there is O₂ or NO₃

Oxygen Usage Hierarchy

Free Dissolved Oxygen	Aerobic or Oxic Treatment
Little or No free Oxygen, but NO ₃ present	Anoxic Treatment
Sulfate, SO ₄ is the next choice of the Bugs	Anaerobic conditions are beginning. ODORS fm. H ₂ S

"Off – On" Aeration

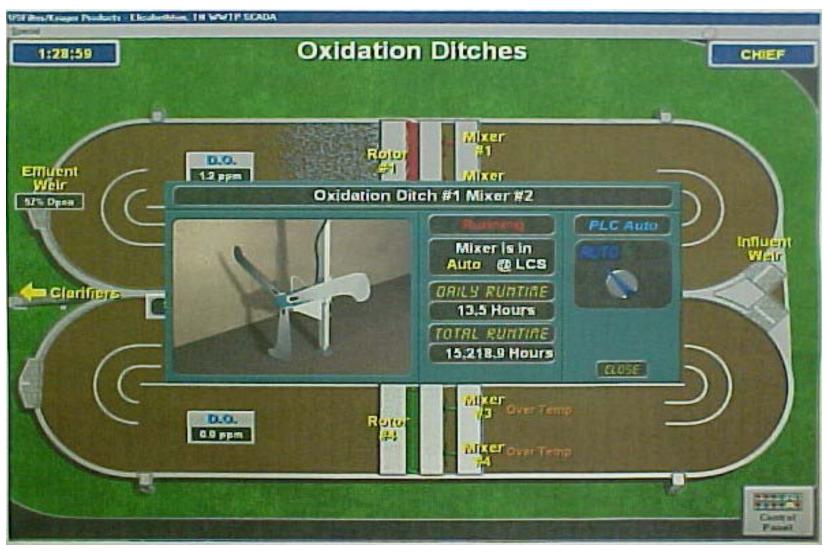
Wastewater Treatment Plant Examples

Prison Wastewater Treatment

Operational Problems

- Low pH
- Bloodworms
- 1 Caustic feed added
- 2 OFF/ON
 - 3hr ON/ 3hr Off
 - Recycled alkalinity
 - pH maintained
 - Caustic eliminated
 - Bloodworms gone

Prison Wastewater Treatment


- Current Data, EFF.
 - BOD \sim 1-2 mg/L
 - TSS \sim 1-2 mg/L
 - $-NH_4\sim0.3$ mg/L
 - $-NO_3$, 1-4 mg/l
 - $pH \sim 7.0$
- Aerator
 - pH 6.2-6.8
 - Alkalinity ~80 mgL

Small Oxidation Ditch

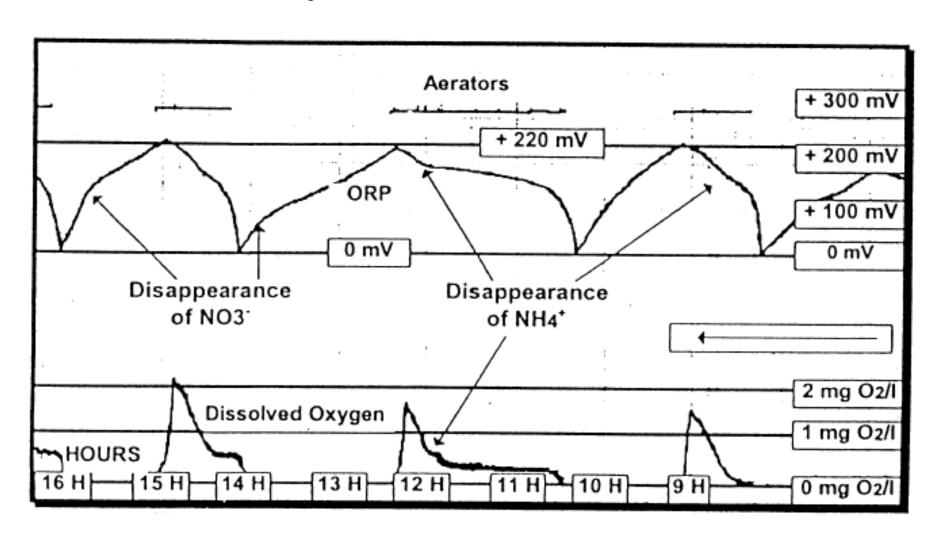
- 30 min. Settlometer = 1000
- Microscopic evaluation = filaments
- History of low eff. pH
- Eff Alkalinity ~ 0.0 mg/L
- Off/ On
 - 5hr ON/ 3hr off
- Best effluent ever and 30% electricity savings

Large Oxidation Ditch

Large Oxidation Ditch

- Kruger system
- Computer controlled Dissolved Oxygen
 Range
 0.2 to 1.5 mg/L
- $N0_3 < 1.0 \text{ mg/L}$
- TSS $\sim 1.0 \text{ mg/L}$
- BOD < 5.0 mg/L

Extreme Cycles


- Basic Cycle
 - Off 2-6 pm
 - Off 12-6 am
- BOD ~ 3.0
- TSS ~ 1.0
- $NH_4 < 0.2$
- $NO_3 \sim 5.0$

Determine "Off" Time

- ORP, Oxidation Reduction Potential
 - Common cycle
 - Aerate to + 200 mV
 - Air "off" to -50 mV
 - Theoretical beginning of Sulfate reduction
 - -50 mV, Goronszy
 - -100 to -200mV Optimum range for H₂S creation
 - Odors will depend on concentration of H₂S & pH
 - Measure in the settled Biomass

ORP & DO Graph

Charpentier, et.al. Water Science & Tech. 1998

Determine "Off" Time

- Oxygen Uptake Rate, OUR
 - $O_2 mg/L + (2.86 * NO_3 mg/L) = Hours "Off"$ OUR mg/L/ Hr
- Monitor
 - pH, Alkalinity, Nitrate
 - Enzyme Fluorescence, more direct measure of biological metabolism.
- Trial and Error

Items of Concern

• Aeration Capacity to raise DO after "Off" cycle.

- Diffuser Type
- Mixing
- Switch Control
 - Manual, Timers,Computer
- Different Flows & Loads

If you nitrify, Why not denitrify?

• Benefits

- Meet permit limits
- Save money
- Recycle oxygen and alkalinity
- Select against filaments
- Be a better operator!

Questions?

Comments!

Acknowledgements: Gratitude is expressed to the following plants and their operators for data, photos and the confidence in my abilities to try a new plant operational strategy in their facilities.

- Baxter, Tennessee
- Ducktown, Tennessee
- Elizabethton, Tennessee
- Morgan County Regional Correctional Facility, Morgan County Site